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1. Introduction 

In previous work [1],[2], we showed how to use the free boson Feigen-Fuchs [3],[4] 

description of parafermion (PF) conformal field theories [5],[6] to describe the im- 

portant properties of these models. Our work was based on the bosonisation of 

the chiral algebra for the minimal 2~ PF models [7],[8]. We focused on the rep- 

resentation theory of the minimal models, although it was clear that many of our 

techniques could be applied to the non-minimal cases. It was shown in reference [9] 

that the non-minimal models describe the GKO [lo] coset SU(l,l)/U(l) of the 

SU(1, 1) tine (Kac-Moody) algebra, so we denote these as SU(1, 1) PF models. 

Reference [9] also discussed how the unitary SU(1, 1) PF models correspond to the 

unitary i&rite dimensional representations of SU(1, 1). Relations between these 

models and other (super)conformal field theories are given in references [2],[6],[9]. 

In this paper we use the formalism developed in [2] to derive the representation 

theory of finitely reducible SU( 1,l) PF models. The finite reducibility requirement 

excludes models with irrational central charge. We describe the embedding of the 

different representations in the bosonic Fock space and use this to construct the irre- 

ducible PF characters which correspond to continuous and discrete unitary SU( 1,1) 

representations. Finally, we discuss the problem of constructing modular invariant 

SU(1, 1) theories. 

2. Bosonic Representation of the Chiral Algebra 

In this section we summarize results given in reference [2] which will be needed 

for the analysis in this paper. Consider two commuting free bosons 4i and d2 with 

propagators given by 

41(~)41(~) = - 142 - w) , 42(zhb2(~) = + ln(z - 20) 

The holomorphic stress energy tensor is defined to be 

(2.1) 

T(Z) = -+(@41(4 + ;842(*)a4,(4 +i!$&41(*), (2.2) 

where the Q0 term corresponds to background charge -QO 

Q0=/Z. (2.3) 

Finite reducibility of the algebra requires that all of the operator product exponents 

of the theory be given in units of the fraction l/N where N is an integer IS]. In 



particular, the relative monodromy of 11, i with $j is defined by the integer b. In 

this paper we focus on SU(1, 1) PF models, which correspond to b < 0 [6]. 

The central charge is 

c = 2 - 3Q2, = 2(N - b)/(N + 2b) (2.4) 

We are interested in unitary theories and therefore require c > 0. It is convenient 

to define K E N/lbl. In terms of K, the c > 0 condition becomes K > 2. 

It is convenient to parametrize vertex operators as 

V,f,(z) = exp( $Qoh(z)) exp( $@42(z)) 

They have conformal dimension 

A’ = w+2b) VI2 
m 4b(N+2b) -46N 

The Feigin-Fuchs conjugate V,,$-26(z), and the 4s conjugate V:,(z) have the same 

conformal dimension as VA(z). 

The parafermions are given by 

tip(z) =~p j 17 VI,$::,‘,“‘(~) > np = [blNlpi2p!~~~[c,,il-’ , 
(2.7) 

7@(z) =nJ y4 7j v;!;;‘*‘(t) 

They satisfy the operator algebra 

41(%)&(O) =Cl,pT*P+‘-*,-*,~~+l(0) + ” 1 

t&*)&O) =Cf,p**p+~-*I-*,~~+l(0) + ‘. . 
(2.8) 

Though ~1,~ can be determined by associativity of the PF algebra, our analysis does 

not require its evaluation. The fields 7 and rj are given by 

T/(t) = VAN+**)(*) , q(z) = V(NNf2b)(*) 

They are dimension one fermions and two of the three screening operators in the 

bosonized PF theory. The third screening operator is given by 

J = i&$~b’-~* (2.10) 
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The charge conjugates to 7 and $ are given by 

[(z) = V:~N+2b)(t) ( ((2) = v‘(N+2b)(Z) (2.11) 

They are conformal dimension zero fermions. Equations (2.9) and (2.11) are bosonic 

representations of two c = -2 fermion ghost systems [ll], (o,t) and (G,t). The U(1) 

currents of the two fermion systems are 

j(r) = --IIt i ;( *) = -?ji . (2.12) 

The charge operators j, and j,, count the fermion charge of the vertex operators 

(2.5) as 

jo[v;] = 2 ) jo[v;] = qf (2.13) 

In particular, jo[q] = 1, jo[<] = -1. Vertex operators with integer jo (30) charge are 

local with respect to the (q,[) ((Q, 0) y t s s em. Vertex operators with non-negative 

j, (To) charge are independent of the zero mode & (&). 

Finite reducibility requires the operator product of parafermion with the vertex 

operators V,, to have monodromy in units of l/N. This implies that m is an integer, 

and places no constraint on e as can be easily checked by calculating the OPE of 

the parafermions and VL. 

3. Parafermion Highest Weight Modules 

The irreducible modules are obtained from the highest weight primary conformal 

fields 4q which also satisfy the finite reducibility constraints. Define the mon- 

odromy parameters wg and wi via the operator products between parafermions and 

PF/Virasoro highest weights 

til(z)‘++q(o) = z-yq’?$+2b , d(Z)+~(o) = ~-w’$:-,, (3.1) 

The independent paramet,ers w,,wi E R satisfy the finite reducibility constraints, 

wg = fqjN mod 1 , w,’ = -q/N mod 1 , q E integers , (3.2) 

and also satisfy the constraint that the 4a are highest weights with respect to the PF 

algebra. This requires that the states &+zb and $i--2b of eqns. (3.1) have conformal 

dimension greater than or equal to the conformal dimension of the PF/Virasoro 

highest weight c#J~. This is equivalent to the constraints 

wq 5 1 - b/N , w; 5 1 - b/N 

3 

(3.3) 



We now search for PF/Virasoro primary fields which are of the form VA. The values 

off? and m for these Virasoro primaries are constrained by requiring that they are 

parafermion highest weights. Although we have no proof that there are no other 

Virasoro PF/Virasoro highest weights in the boson Hilbert space for particular 

values of central charge c, we will find from the set we consider all representations 

of the unitary finitely reducible highest weights [9]. 

The OPE’s of these operators with the parafermions $Q and $1 are easily 

evaluated within the free field theory. 

$l(z)v:(o) = 2 Z-ml-1 (e -m) 
[ 

+Z (e - m + N)i&,(O) - J2bo &h(o) (3.4) 

+0(z2) 1 v,ft+2b(o) > 

and 

t n1 d(zem = - 2b 

-2. (e + m + N)ii3$2(0) + J2bo (3.5) 

+ o(z’) 1 v,,@,-,,(o) 

In contrast to the b > 0 case [2] we find two type of solutions to (3.3). Either 

m=*e e=b,b+l;..,N-b, (3.6) 

or 

m = b, b+ 1,. , -b e E complex numbers, !Z # %m (3.7) 

Thus the holomorphic part of the PF/Virasoro highest weights are 

40 =v: , 

4, =v,” 1 q = +I, -lb1 + 1,. , N + lb1 , 

4’q =v-$& , q = -+I, -lb1 + 1,. , N + lb1 , 
(3.8) 

7 --wi u,m - V” u E complex numbers, u # +w , UJ = -lbl, -lb/ + 1,. , lb/ 
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We will see that 4q and #g correspond to the D(f) series of SU(1, 1) representations 

and that y”~“’ correspond to the continuous series. The conformal dimension of these 

states is given by 

~m[d,l = dimW,l = 2$t%L$bj , 

&m[yus”] = u(“+2b) _ u’ 
4b( N + 2b) 4bN 

(3.10) 

A non-negative dimension for ds and qYs restricts us to 

q=O,l,...,N 

A non-negative dimension for y”aw restricts us to 

u=z#iw, Ibl-t<z<ibl+t, wheret= JbZ+w2(1-2/K), 

or to 

u = lb1 + iy, y E real numbers . 

(3.9) 

(3.11) 

(3.12) 

(3.13) 

Consider the action of t.he parafermions on the PF/Virasoro highest weights 

#I~ and +lq. We use the same notation as Lykken [6] to label the PF descendants 

which are Virasoro highest weights. Using (3.4), (3.5) and the bosonized form of 

$1 and $j given in (2.7), we find the lowest dimension PF descendant, Virasoro 

highest weight state for each PF charge sector (up to normalization constants) 

$(z, = A(-N+q-b+2bp)/N.. A(-N+*+b)/N &(z) = j ‘?v;:,$$;,b’(z) , 

?‘;(d = A;-N+y-b+2bp),N ‘. A~-,v+q+b),Nd’N-&) = ~~~;-2b,(z, 2 

‘#“;b) = A(-N+q-b+Zbp)/N .. . A(-N+q+b)/N d’,(z) = Vq:;$2bp(Z) > 
(3.14) 

&;b) = A:-N+g-b+2bp),N ‘. . Af-,+q+b),j,d’N-q(~) = j irv;:;?_:,2,b’(Z) 

The operators A and At are the modes of the parafermions +t and $I!, in the 

appropriate charge sector, defined in the usual way via contour integration [5],[6]. 

The states 4; and $,“-q for p = 1,2,. . . 

4:-q, and states 4’; and $,“-q 

are parafetmion descendants of dq = 4: = 

are parafermion descendants of #q G 4’: = $rMq. 

The parafermions 4; = $r and 4’; = Gj, have conjugates 4: = V{m2bp and 4’: = 

v--NN+2bp as was discussed in [2]. The conformal dimensions hi of the fields 4!, 

$j, 4’; and 4’; are hi = AzIi-sb,, where A(, IS given by eqn. (2.6). Under the 

identification in (3.14), we have the trivial equivalence 4: = #-q and 4’: = $‘r-‘, 
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as can be checked by explicit calculation. Note that there do not exist the 2s 

degeneracies or truncations encountered in the minimal SU(2) PF modules [2]. 

The y”~“’ states have no analogue with states in the minimal SU(2) PF theories. 

As with the dq and #q, we can write the bosonized form of the lowest dimension 

PF descendant (Virasoro highest weight state), in each PF charge sector. We find 

(up to normalization constants) 

T’,“++, = A(w-b+zbp)/h’ A(w+b)/N Y”‘w = v&2,, > 

-l$%) = .‘&,,-b+~bp),N . . . Af-,+,),, $+ = v,u-,b, . 

(3.15) 

The conformal dimension of the r,“,” field is given by hi,‘” = AL+sbp. 

4. Relationship between Parafermion states and SU(1,l) Kac-Moody 

Representations 

The purpose of this section is to relate the PF states in the previous section to 

SU(1, 1) states. By adding a third boson 4s with the same propagator as 41 to the 

parafermions we can construct three dimension one currents 

x3 = iJNlzb a,c$,(t) , 
X+ = JNIb Ill(z) exp (i&jF$3(~)) , 

X- = JNIb d(z) exp (-i$iijF4b3(2)) , 

(4.1) 

that obey the SL(2,C) Kac-Moody algebra OPE. For b > 0, identifying .J’ = X3 and 

J* = X* f J’ + i J* leads to an SU(2) 1 eve1 N/b Kac-Moody Algebra with Cartan 

Killing form g’j = diag[l, 1, l] and an adjoint Casimir of Qod = 2. In the b < 0 case, 

$l increases the JZ charge, and we identify J3 E -X3 and J* s XT z i J’ 7 J’. This 

leads to an SU(l,l) level h’ E N/lb1 Kac-Moody Algebra with g’j = diag[l, 1, -11 

and Qad = -2. In terms of J’, J2, J3, our SU(1, 1) notation now conforms to that 

used in [9], 

ih’g’j ‘. li J’b)Jj(w) = cz _ wl2 + i”;:“y;;“+: J’(z)Jj(w) : , 

gii = gij = diag[ 1, 1, -11 , ” 2Jk = gkr,ijr 
(4.2) 

The unitary representations [12] of SU(1, 1) are labeled by the value of their 

Casimir J* = gij J’Jj = i( - J+ J- - J-J+) - ( J3)’ and their J3 eigenvalue. First 
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we have the two discrete series, 

Di+) J2=-tW1), t=n+e,, n~{0,1,2...}, ose,<l, 
J3 eigenvalue m 2 & , m=e,ei-i,e+2 ,... , 

Dip’ J2=-e(e-I), e=n-e,, n~{~,2 ,...I, 0~~~~1, 
(4.3) 

J3 eigenvalue m 5 -e , m=-e,-(e+i),-(e+2) ,... 

There are also the continuous principle series and continuous supplementary series, 

(Pk. ct J* = -e(! - 1) > 4 , e = 4 + iy , y E real numbers , 

J3 eigenvalues m = n + e, , nE{...-l,O,l...}, O<e,<l, 

p J2=-!(e--I)>-e&,-l), O<e,<l, !~realnumbers, 

J3eigenvalues m=n+e,, no{...-l,O,l...}. 
(4.4) 

Affine SU( 1,l) highest weight fields G& satisfy in general 

Gfn,,(w) J*(z)Gh(w) w (~ _ .w) +finite part , 

t 
J3(z)G’,(w) = “(sGJ$) +finite part 

(4.5) 

The OPE’s of the field G’, are less singular if a field G’,*, vanishes. This occurs 

for Dj+) state Gi+)’ and the Di-’ state Gy;)‘. Thus the relationship between the 

PF representation given in (3.14) and the DC*) highest weights is 

G’,+“(z) N kY;l’A!~(z)eXp (m 6 43(z)) , 

G:“(z) - #$~~~(t)exp (m & 43(z)) 
(4.6) 

The q5; and 4’; states correspond to descendants of the DC*) series which are at 

the boundary of the representations. For example, the 4; PF states are the points 

on the (Jo”, Ls) diagram, (figure 2. of ref. [9]), with Ls > 0 and multiplicity one. 

Let G!$)’ correspond to the continuous series highest weight fields. Their 

relationship to the PF representations is given by 

&o.“(~) N y~W~w 
m+w/(21bl)(z) exp (m & $3(z)) , 

for w = {-lbl,. , --I}, e, z + + 1; 
(4.7) 

for w = {0, , lbl}, e, F G 

All of the PF/Virasoro highest weights we have found by the analysis of section 3 are 

in correspondence with the unitary SU( 1,l) parafermion theories [9], except for the 
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7, z,w with z 5 $ - e - 1 or I > 1 + e - 1 . For these values of I the constraint IO 21 -2 10 *I 
-e(e - 1) > --e,(e, - 1) is not satisfied and the $2”’ correspond to non-unitary 

continuous representations. 

5. Character Analysis 

The parafermion character for each PF/Virasoro highest weights listed in sec. 3 is 

evaluated by truncating free boson characters as discussed in [2]. This is a two step 

process. Since the chiral algebra is independent of both of these zero modes, we first 

extract from the boson characters states which do not have the proper dependence 

on the fermion zero modes & and &. Secondly, we need to subtract any additional 

null vector modules in the highest weight module which can be constructed with 

screening operators. We will determine the number of these null vectors by explicit 

construction. Because t,here are fewer null vectors than the minimal SU(2) case, 

the calculation of the characters is more straightforward than that presented in [2]. 

The PF/Virasoro highest weight states of sec. 3 cannot in general be diagonal- 

ized with respect to one or both (q, 5) systems. A state is local with respect to a 

fermion system if it can be diagonalized in terms of the fermions and an auxiliary 

boson [2]. Since the parafermions are local with respect to either system, we can 

address the locality of parafermion modules by considering the PF highest weights 

of eqn. (3.8). 

First consider the DC*) parafermion highest weights. The state dp is local with 

respect to the (n, <) system and independent of the Es zero mode. The state 4’s is 

local with respect to the (rj, [) system and independent of the (0 zero mode. When 

f is an integer dp and q4’p are also local with respect to the other (7, [) system and 

depend on (0 and <s respectively. Denote the holomorphic subspace of states in the 

boson Fock space as ‘H. Consider the subspace 7-t10c~ c ‘H which contains states 

which are relatively local with respect to the (0, 0. Likewise we define ?&al c 7-i 

which contains states which are relatively local with respect to the (rj, [) system. We 

define the small Hilbert space &,,dr c 7-&~ (‘i&d, c ‘&~) to be the restriction 

of states in ?-lrOcal (‘&,~) to only those states which are independent of the fermion 

zero mode (0 (&). We can decompose the relatively local Hilbert space ‘7-&~ 

(fitlocal) as 

7-iloc.d = %nall @ to?-I1 1 filocd = %dl @ $3 fil (5.1) 

The D(+) (DC-)) PF modules are in ‘&,dr (fis,,,dl ) Non-vanishing two point 
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functions for the Virasoro highest weights are given by 

(E(~M;h)~;(o))** = *-*“F and (&+f~‘;(z&‘;(o))~~ = z-*~; . (5.2) 

The operators t(w) (i(w)) inserted into the correlator soak up the path integral 

over the fermion zero mode [ll]. Therefore the conjugate field to 4: is $;, and the 

conjugate to f$; is 8;. 

Consider the DC+) Virasoro primary field @J = V&, where L = N - Q and 

M = N - Q - Zbp, with conformal dimension h; = Ah. The character of the boson 

module [V,&] is 
qAn”l-c/24 

xk4 = k4491Z ’ 
(5.3) 

where p(q) = nr=i(l - q”). Let {Vh} be the submodule of [V,] which contains 

only descendants of Vh restricted to the small Hilbert space ‘?&all, and denote i& 

as its character. By construction, the sum of this character and similar characters 

shifted by the charge of the zero mode must be the boson character XL 

XL = x^k + (<o)&tg+**’ , (5.4) 

where (Es) denotes the charge of the zero mode. The conformal dimension Ac+Nd2b 

of the “second level” highest weight is greater than AL M; it would not be included in 

eqn. (5.4) otherwise. (Eqn. (5.4) is unaffected if the Virssoro primary is local with 

respect to the (ij, t) system. In these cases, the primary is is dependent. However, 

there is no selection rule that requires subtracting from the boson character states 

which are (0 independent. This is because the parsfermions contain the mode 60 

and can therefore annihilate the <s mode.) The character gh is found recursively 

by continuing this process, 

gb = &-1yx2;L;+**) (5.5) 
r=o 

In principle this is not the end of the analysis for the irreducible character since 

we must also subtract out PF null vectors in the module {$}. Following Feigin 

and Fuchs [3], we assume that for the values of c given by (2.4) the only null vectors 

in the bosonic theory are parafermion null vectors. We will now see that there are 

no such null vectors. It was shown in ref. (131 that these type of null vectors could 

be explicitly constructed with screening operators. This analysis was carried out in 

more detail than we present here for the minimal PF models in ref. [2]. 
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Again consider the DC+) Virasoro primary 4; = Vh, where L = N - q, M = 

N - q - 2bp. Null vectors are constructed by multiplication by a set of screening 

operators and subsequently shifting the charges of the vertex operator. For instance, 

we can formally construct fi$‘rlq = j~V,&~‘~+**). For this to be a well defined 

non-vanishing null state, the contour integral must close and be singular. The 

contour integral over n closes, however it is non-singular unless p = 0, in which 

case fipJq = &. Similarly, we can construct fi$ilq using ?j as a screening operator. 

However, we find that non-vanishing states of this type are Virasoro primaries of the 

type $, proportional to (0 when diagonalized in the (7, E) basis and therefore not in 

7-l smd. We must also consider operators of the type figl’l = n:=, [$ J(ri)] V&+2br, 

where J is the third screening operator given by eqn. (2.10). All of these null vectors 

vanish even if contours close since Agzbr < Ah. One can also show that further 

combinations of the three screening operators do not yield non-trivial null vectors 

in %d. 

Thus the irreducible character 5: of { 6) is given by eqn. (5.5) with L = N - q, 

M = N - q - 2bp. Since the conjugate of 4; is 4; the character of {Y} is also 

given by eqn. (5.5), and c; = Ei. This is the parafermionic contribution to the 

irreducible D(+) characters. The 42 conjugation symmetry yields the same result 

for the parafermionic contribution to the irreducible DC-1 characters; c’; = E; and 

q = cq P’ 
Now consider the continuous series. In general PF states in the continuous 

series are not local with respect to either of the (n, I) systems. Using eqn. (2.13) 

and incorporating the restriction in (3.12) we arrive at three exceptional cases: 

Case I: 1u = 0, u = z, and 5 = -1. We have both lo and (0 dependence. 

Case II: w < 0, u = 5, and y = -1. We have Es dependence and the state is not 

local with respect to the (6, [) system. 

CaseIII:w>O,u=z,and~= -1. We have &, dependence and the state is not 

local with respect to the (n, <) system. 

Case I is on the boundary of the unitary continuous supplementary series. and 

corresponds to the descendant 4:‘“’ = $:‘“‘. Therefore it is a null state in the DC*) 

representations. Such a situation is mentioned in [9]. 

For the remaining ~“3’” representations, even if they are local with respect 

to an (n,<) system (cases II and III) they are not independent of that systems 

[ zero modes. Since the parafermions can annihilate these zero modes, the em- 

bedding of the continuous series representations fills up the entire two boson Fock 

space. The conjugate field of y”.” is given by Feigin-Fuchs conjugation of the 41 
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boson and the usual conjugation of the 42 boson. The conjugate field to r,“+’ is 

(-/,“,“)t = yI~,“-2b’-“. Note that if $‘+” satisfies (3.12) or (3.13), so does its conjugate 

field. Since there is no zero mode independence in the continuous representations, 

correlation functions are computed straightforwardly by using the bosonized form 

of the fields. The non-vanishing twopoint function is 

(G-**~-” (z)-y;ypu’“(o)) = *-*v” (5.6) 

As in the discrete cases, one can check that there are no null vectors which can 

be constructed with screening operators for the continuous representations. Hence 

their character will be the same as that for the two boson Fock space. 

In summary the irreducible discrete and continuous characters are given by 

u,w P 
--c/24+h;,W 

cp = 
[dd12 

where the other discrete characters are given by the relation 5; = c’; = C’j = cj. 

These results agree [14] with the determinant formula of ref. [9]. 

6. Discussion 

One would like to combine these characters to find new modular invariant parafer- 

mion models. It is clearly more difficult to construct non-minimal unitary modular 

invariants than minimal ones. All PF highest weight representations in the mini- 

mal case are unitary and embedded into the bosonic Fock space in the same way, 

i.e. they are independent of both fermion zero modes. This embedding structure 

plays a crucial role in closing the operator algebra onto unitary states. However, 

in the non-minimal case, there is no unique embedding (specified by fermion zero 

mode dependence) of the highest weight representations into the bosonic Fock space. 

Furthermore, the highest weight analysis of sec. 3 admits non-unitary representa- 

tions. One obvious approach to constructing modular invariant theories is to use 

the continuous series only, since their characters are just the two boson characters. 

Preliminary calculations using the methods developed in ref. [2], show that generic 

continuous unitary states fuse onto non-unitary states [15]. Similar calculations 

show that discrete highest weights can fuse onto continuous highest weights. A 
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careful study of the fusion rules may determine the combinations of characters that 

form unitary modular invariants. 

We would like to thank J. Lykken, D. Nemeschansky, and T. Morris for useful 

discussions. 0.F.H thanks Leonard Peltier for encouragement. 
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